Isnin, 8 November 2010

Perang Cyber


"Cyber warfare atau perang ofensif dalam perang informasi, terutama menyerang infrastruktur, misalnya serangan dan gangguan terhadap jaringan komputer, perang elektronika dengan wahana ruang angkasa dan sarana gelombang elektromagnetik, propaganda, penyesatan dan disinformasi, perang psikologi dan operasi psikologi melalui media massa," ujar Laksda Purn. Soebardo dari Lembaga Sandi Negara 1997 pada seminar Hari Kesadaran Keamanan Informasi di FMIPA UGM, Jumat (25/4/2008).Negara-negara maju seperti Amerika Serikat, Australia atau Inggris bahkan telah membekali dirinya dengan kemampuan elektronik warfare. Sebagai contoh, Angkatan Udara Amerika Serikat membentuk Air Force Computer Emergency Response Team (AFCERT) yang bertugas untuk menangkal serangan virus dan penyadapan elektronik via jaringan LAN, WAN, atau World Wide Common System. Pembentukan AFCERT memang tidak didasarkan pada paranoia belaka. Pasalnya komputer pusat Angkatan Udara AS itu pernah diserang cracker. Kemudian, dalam kasus lainnya, Pentagon pernah disadap oleh cracker remaja dari London."Serangan ini begitu rawan. Namun, sering kurang disadari oleh dinas-dinas pengaman elektronik di Indonesia. Padahal sudah selayaknya negara kita ini membentuk badan semacam AFCERT di Mabes TNI," tambah Soebardo.Lebih lanjut Soebardo menandaskan potensi yang ada seperti BIN, Intel Laut dan Udara serta Lembaga Sandi Negara. Ketiga lembaga itu menurutnya dapat dikonsolidasikan untuk menangkal ancaman perang cyber.

Jenayah Cyber



//

[sunting] Kecanggihan Internet - kemampuannya mengatasi sempadan geografi
Keupayaan Internet sebagai alat komunikasi jauh mengatasi alat-alat komunikasi yang ada sekarang. Percetakan, telefon dan televisyen telah berzaman memainkan alat yang penting dalam media untuk menyampaikan ilmu dan maklumat kepada orang ramai. Namun, bahan-bahan media ini penyebaran maklumatnya adalah satu hala dan tidak interaktif seperti Internet. Ini membolehkan pengawalan maklumat dilakukan secara berkesan. Malah kebanyakan negara mempunyai peruntukan undang-undang yang mengawal percetakan dan kandungan televisyen. Di Malaysia contohnya, sebarang percetakan yang disebarkan kepada orang awam memerlukan permit yang sah. Peruntukan undang-undang yang sedia ada seperti Akta Percetakan, Akhbar dan Penerbitan 1984, Akta Penyiaran 1988, Akta Hasutan 1948, Akta Rahsia Rasmi 1972 membataskan maklumat-maklumat yang boleh dicetak dan diedarkan kepada orang ramai
Bahan media yang tradisional juga dibatasi oleh had geografi. Penyebaran buku, makalah dan surat khabar memerlukan kos, tenaga manusia, infrastruktur jalan dan kemudahan kenderaan. Kesemua faktor ini membataskan penyebaran maklumat dan pada masa yang sama memudahkan pengawalan maklumat.
Perbezaan antara Internet dan bahan media yang sedia ada amatlah nyata kerana Internet adalah satu platform yang menyediakan maklumat daripada berjuta-juta pengguna dan pengkaji selidik dari seluruh dunia. Internet memungkinkan seseorang menyebarkan maklumat dan berinteraksi dengan orang lain yang mungkin beribu-beribu batu jauhnya.
[sunting] Perlukah internet dikawal selia
Pengawal seliaan bahan-bahan media dan cetak adalah satu praktis yang sudah lumrah di negara membangun dan juga di kebanyakan negara maju. Dengan perkembangan Internet, timbullah tanda tanya sama ada Internet harus dikawal selia atau tidak.
Namun pihak kerajaan Malaysia mengambil langkah yang positif untuk tidak menapis dunia siber. Ini termaktub dalam rang undang-undang jaminan yang dijanjikan oleh kerajaan Malaysia dengan syarikat-syarikat Koridor Raya Multimedia. Seksyen 3(3) Akta Komunikasi dan Multimedia 1998 juga mengisytiharkan bahawa tiada suatu pun peruntukan di bawah akta tersebut yang membenarkan sebarang penapisan maklumat berlaku.
Prinsip ini adalah berdasarkan pendapat bahawa pengawalan maklumat hanya akan memberikan kesan yang negatif kepada perkembangan teknologi komunikasi yang canggih ini.
Ini berbeza sekali dengan sesetengah negara yang mengambil pendirian yang jauh lebih agresif. Negara-negara seperti Cuba dan China, mengamalkan penapisan maklumat secara total atau separa. Mereka menganggap kandungan yang dibawa di dalam Internet sebagai ancaman ideologi kepada penduduk mereka. Mereka lebih suka penduduk mereka pasif, buta dan tidak celik kepada maklumat dan perkembangan dunia terkini.
Banyak juga negara yang bersikap sederhana dan menapis hanya maklumat yang mungkin merosakkan fikiran orang awam.
Kebebasan bersuara yang sedia ada seharusnya tidak disalahgunakan. Namun demikian jika adapun penyebar maklumat palsu ataupun pihak pembangkang sesuatu kerajaan menggunakan Internet untuk menyebarkan ideologinya, ia bukannya satu ancaman serius. Pihak kerajaan masih ada cara lain untuk mengatasinya contohnya adalah dengan cara meningkatkan ilmu pengetahuan rakyat dan menyebarkan berita yang benar di media cetak atau TV. Dengan cara ini orang ramai akan dapat mempertimbangkan kebenaran. Tapi bagaimana dengan jenayah siber yang lain. Bolehkah kita bertolak ansur dengan jenayah siber yang boleh membawa ancaman kepada masyarakat dan tamadun ?Siapakah penjenayah siber? Apakah jenayah yang dilakukan? Di mana jenayah dilakukan? Soalan-soalan yang sukar di jawab. Kalau jenayah lain senang dikenali contohnya perompak tentu sekali memegang senjata , penculik tentu sekali meminta wang tebusan tetapi bagaimana mengenali penjenayah siber. "Satu masalah utama untuk membezakan ancaman siber dengan ancaman fizikal adalah untuk menentukan siapa yang menyerang sistem kita, mengapa, bagaimana, dan dari mana," Michael A. Vatis dari FBI. Umumnya penjenayah siber adalah golongan berpengetahuan ataupun profesional. Munkin kawan kita , mungkin pelajar, mungkin profesor atau siapa sahaja. Mereka akan melakukan jenayah terhadap intitusi mereka sendiri atau intitusi pesaing atau mereka diupah oleh pihak tertentu contohnya.
Organisasi perniagaan mungkin menjadi sasaran pesaingnya, pekerja atau bekas pekerja. Bank serta institusi kewangan oleh perompak dan penjenayah profesional. Manakala, pihak universiti menjadi sasaran pelajar atau bekas pelajar. Agensi kerajaan pula mungkin menjadi mangsa pengganas dan komputer militari mungkin disabotaj.
Kalaulah orang yang melakukan jenayah tidak di kenali undang-undang yang di rangka untuk membendungnya tidak akan bermakna. Di Amerika yang canggih teknologinyapun gagal mengesan perancang trajedi 11 September. Semasa Peristiwa 11 September 2001, 19 orang perampas kapal terbang memasuki Amerika Syarikat dengan menggunakan visa yang sah. Selain secara peribadi, mereka berhubung melalui Internet atau membuat panggilan telefon dengan menggunakan kad prabayar untuk merancang serangan terhadap New York dan Washington.
[sunting] Kepentingan ekonomi
E-commerce dan K –ekonomi menjadi begitu penting sekarang. Dalam era globalisasi sekarang sesebuah negara akan ketinggalan jika masih bergantung kepada kaedah traditional sahaja dalam urusan ekonomi. Mereka perlu bergerak seiring dengan negara-negara yang mengamalkan K- ekonomi. Bagi negara-negara membangun kepakaran dalam bidang teknologi maklumat amat terhad. Untuk mengatasi masalah ini mereka perlu membuka pintu untuk perlaburan luar. Malaysia contohnya telah membina Multimedia Super Corridor (MSC), iaitu sebuah kawasan seluas 15 km x 50 km selatan Kuala Lumpur. MSC mensasarkan untuk menarik syarikat teknologi bertaraf dunia menggunakan MSC sebagai pusat untuk mengujian teknologi. Tujuh aplikasi perdana telah dibentuk untuk mengujudkan aktiviti di dalam MSC. Ia terdiri daripada sekolah bestari, kad pintar,teleperubatan, kluster R&D, kerajaan elektronik, rangkaian pengilangan sedunia dan pemasaran tanpa sempadan.
Untuk menarik pelaburan asing yang berstatus MSC Malaysia telah memperkenalkan sebuah senarai yang dikenali sebagai Rang Jaminan (Bill of Guarantees) yang antara jaminannya ialah tiada pernapisan internet.selain malaysia banyak negara lain mengambil langkah yang sama contohnya Indonesia, India, mexico dan boleh dikatakan semua negara maju tidak menapis internet. Tidak menapis internet bermakna semua orang boleh menggunakan internet dengan bebas ini termasuklah penjenayah siber. Oleh itu tidak bermakna dirangka undang-undang jenayah siber. Beberapa contoh peristiwa akibat tiada penapisan internet : melalui alam siber Zapatista National Liberation Army di Mexico semakin bertenaga dalam menegakkan perjuangan mereka , aktivis siber di Indonesia berjaya menumbangkan rejim Suharto pada bulan Mei 1998, Pelampau Hindu yang merobohkan masjid pada awal tahun 1990-an dan menyerang penganut Kristian pada akhir tahun 1990-an terdiri daripada golongan pekerja di India yang menggunakan kaset video dan Internet untuk menyebarkan mesej serta tragedi 11 sept juga menggunakan komunikasi internet.
[sunting] Berbeza takrifan jenayah
Sebelum kita melangkah lebih jauh lagi untuk membincangkan jenayah siber ini, terlebih dahulu marilah kita lihat terlebih dengan definisi jenayah siber itu sendiri. Jenayah membawa maksud aktiviti seperti kecurian, penipuan, pemalsuan, peras ugut. Jenayah komputer pula melibatkan segala aktiviti jenayah yang biasa dilakukan seperti kecurian, penipuan, peras ugut dan segala aktiviti yang melibatkan perlanggaran undang-undang yang sedia ada.
Walau bagaimanapun, definisi yang lebih baik dan komprehensif telah dibuat oleh Mr Donn B. Parker seorang penyelidik di dalam jenayah komputer dan keselamatan untuk SRI International di Menlo Park, California. Beliau menyatakan bahawa jenayah komputer adalah mana perlakuan yang mempunyai niat dan dikaitkan dengan komputer melalui apa-apa cara dan menyebabkan mangsa menderita atau boleh menyebabkan penderitaan, kerugian dan berterusan.
Jabatan Kehakiman US menguatkan lagi definisi ini dengan mengatakan bahawa jenayah komputer adalah mana-mana aktiviti yang tidak sah dimana pengetahuan mengenai teknologi komputer digunakan untuk merealisasikannya.
Namun demikian kita harus akui bahawa ujudnya takrifan jenayah siber antara negara. Bagi negara-negara islam judi, pornography, pengiklanan sex adalah suatu jenayah tetapi bukan jenayah dikebanyakan negara.contohnya di America syarikat hal-hal sebegini dianggap remeh hanya pornography kanak-kanak saja dianggap jenayah . Mereka lebih memberi tumpuan kepada keselamatan dan perdagangan. Berbagai –bagai undang yang berkait rapat dengan keselamatan dan perdagangan di rangka seperti trademark low, copyright low,undang yang berkaitan hacker dan penyebaran virus dan sebagainya. Dengan adanya takrifan yang berbeza ini sukar untuk dikuatkuasakan undang-undang siber. Dimalaysia yang terikat dengan janji tidak menapis internet terpaksa merelakan jenayah ini.
[sunting] Kepentingan ketenteraan
Dunia tanpa sempadan menjanjikan peluang serta ancaman, kesejahteraan serta kemusnahan, dan keamanan serta peperangan. Akibat semakin saling berhubungan, maka sistem dan rangkaian maklumat kini terdedah kepada pelbagai ancaman dan mudah diserang. Keadaan ini mewujudkan isu baru tentang keselamatan, seperti yang disebut dalam OECD Guidelines for the Security of Information Systems and Networks: Towards A Culture of Security. Sesetengah negara, seperti Amerika Syarikat meletakkan perlindungan daripada serangan berasaskan siber dan jenayah teknologi tinggi sebagai salah satu keutamaan yang penting. Ekoran Peristiwa 11 September kerajaan dalam OECD merangka Garis Panduan Keselamatan Sistem dan Rangkaian Maklumat yang baru untuk bertindak balas terhadap keganasan siber, virus komputer, penggodaman, dan ancaman lain.
“Walaupun Zaman Maklumat ini menjanjikan kecekapan yang semakin meningkat, namun keselamatan negara lebih sukar untuk diurus,” kata Eliot A. Cohen, pakar strategi dan kuasa ketenteraan, semasa Persidangan Tahunan Keenam di Abu Dhabi. Teknologi maklumat bukan sahaja mengaburkan sempadan antara perkhidmatan dan sempadan antara dunia ketenteraan dengan dunia awam, tetapi juga mengaburkan sempadan keselamatan.
Peperangan zaman teknologi maklumat bukan sahaja peperangan yang melibatkan kekuatan fizikal ketenteraan sahaja malahan peperangan ilmu pengetahuan. Pihak musuh akan menggunakan teknologi ini untuk menyerang sistem komputer kita. Serangan dilakukan dengan berbagai cara temasuklah mencuri maklumat dan merosakkan sistem .kita sebagai pihak yang diserang perlu melengkapkan diri dengan ilmu bagaimana mempertahankan diri dan menyerang balas. Situasi ini secara tidak lansung akan menggalakkan ilmu bagaimana untuk menceroboh sistem dan merosakkan komputer berkembang. Secara tidak langsung hacker dilahirkan. Hacker ini jika disalahgunakan terhadap awam akan menjadi jenayah jenayah. Dalam masa undang undang siber di rancang dan dalam masa yang sama kita melahirkan hacker. Sampai bila masaalah ini akan selesai.

Rabu, 5 Mei 2010

Function of OS


Mac OS X is a line of partially proprietary, graphical operating systems developed, marketed, and sold by Apple Inc., the latest of which is pre-loaded on all currently shipping Macintosh computers. Mac OS X is the successor to the original Mac OS, which had been Apple's primary operating system since 1984. Unlike its predecessor, Mac OS X is a UNIX operating system built on technology that had been developed at NeXT through the second half of the 1980s and up until Apple purchased the company in early 1997.
The operating system was first released in 1999 as Mac OS X Server 1.0, with a desktop-oriented version (Mac OS X v10.0) following in March 2001. Since then, six more distinct "client" and "server" editions of Mac OS X have been released, the most recent being Mac OS X v10.6, which was first made available on August 28, 2009. Releases of Mac OS X are named after big cats; the current version of Mac OS X is nicknamed "Snow Leopard".
The server edition, Mac OS X Server, is architecturally identical to its desktop counterpart but usually runs on Apple's line of Macintosh server hardware. Mac OS X Server includes work group management and administration software tools that provide simplified access to key network services, including a mail transfer agent, a Samba server, an LDAP server, a domain name server, and others.

Operating system


An operating system is the software on a computer that manages the way different programs use its hardware, and regulates the ways that a user controls the computer.[1][2] Operating systems are found on almost any device that contains a computer with multiple programs—from cellular phones and video game consoles to supercomputers and web servers. Some popular modern operating systems for personal computers include Microsoft Windows, Mac OS X, and Linux[3] (see also: list of operating systems, comparison of operating systems).
Because early computers were often built for only a single task, operating systems did not exist in their proper form until the 1960s.[4] As computers evolved into being devices that could run different programs in succession, programmers began putting libraries of common programs (in the form of computer code) onto the computer in order to avoid duplication and speed up the process. Eventually, computers began being built to automatically switch from one task to the next. The creation of runtime libraries to manage processing and printing speed came next, which evolved into programs that could interpret different types of programming languages into machine code. When personal computers by companies such as Apple Inc., Atari, IBM and Amiga became popular in the 1980s, vendors began adding features such as software scheduling and hardware maintenance.
An operating system can be divided into many different parts. One of the most important parts is the kernel, which controls low-level processes that the average user usually cannot see: it controls how memory is read and written, the order in which processes are executed, how information is received and sent by devices like the monitor, keyboard and mouse, and deciding how to interpret information received by networks. The user interface is the part of the operating system that interacts with the computer user directly, allowing them to control and use programs. The user interface may be graphical with icons and a desktop, or textual, with a command line. Another similar feature is an Application programming interface, which is a set of services and code libraries that let applications interact with one another, as well as the operating system itself. Depending on the operating system, many of these components may not be considered an actual part. For example, Windows considers its user interface to be part of the operating system, while many versions of Linux do not.

Secondary storage


Secondary storage (or external memory) differs from primary storage in that it is not directly accessible by the CPU. The computer usually uses its input/output channels to access secondary storage and transfers the desired data using intermediate area in primary storage. Secondary storage does not lose the data when the device is powered down—it is non-volatile. Per unit, it is typically also two orders of magnitude less expensive than primary storage. Consequently, modern computer systems typically have two orders of magnitude more secondary storage than primary storage and data is kept for a longer time there.
In modern computers, hard disk drives are usually used as secondary storage. The time taken to access a given byte of information stored on a hard disk is typically a few thousandths of a second, or milliseconds. By contrast, the time taken to access a given byte of information stored in random access memory is measured in billionths of a second, or nanoseconds. This illustrates the very significant access-time difference which distinguishes solid-state memory from rotating magnetic storage devices: hard disks are typically about a million times slower than memory. Rotating optical storage devices, such as CD and DVD drives, have even longer access times. With disk drives, once the disk read/write head reaches the proper placement and the data of interest rotates under it, subsequent data on the track are very fast to access. As a result, in order to hide the initial seek time and rotational latency, data are transferred to and from disks in large contiguous blocks.
When data reside on disk, block access to hide latency offers a ray of hope in designing efficient external memory algorithms. Sequential or block access on disks is orders of magnitude faster than random access, and many sophisticated paradigms have been developed to design efficient algorithms based upon sequential and block access . Another way to reduce the I/O bottleneck is to use multiple disks in parallel in order to increase the bandwidth between primary and secondary memory.[2]
Some other examples of secondary storage technologies are: flash memory (e.g. USB flash drives or keys), floppy disks, magnetic tape, paper tape, punched cards, standalone RAM disks, and Iomega Zip drives.
The secondary storage is often formatted according to a file system format, which provides the abstraction necessary to organize data into files and directories, providing also additional information (called metadata) describing the owner of a certain file, the access time, the access permissions, and other information.
Most computer operating systems use the concept of virtual memory, allowing utilization of more primary storage capacity than is physically available in the system. As the primary memory fills up, the system moves the least-used chunks (pages) to secondary storage devices (to a swap file or page file), retrieving them later when they are needed. As more of these retrievals from slower secondary storage are necessary, the more the overall system performance is degraded.

Primary storage



Direct links to this section: Primary storage, Main memory, Internal Memory.
Primary storage (or main memory or internal memory), often referred to simply as memory, is the only one directly accessible to the CPU. The CPU continuously reads instructions stored there and executes them as required. Any data actively operated on is also stored there in uniform manner.
Historically, early computers used delay lines, Williams tubes, or rotating magnetic drums as primary storage. By 1954, those unreliable methods were mostly replaced by magnetic core memory, which was still rather cumbersome. Undoubtedly, a revolution was started with the invention of a transistor, that soon enabled then-unbelievable miniaturization of electronic memory via solid-state silicon chip technology.
This led to a modern random-access memory (RAM). It is small-sized, light, but quite expensive at the same time. (The particular types of RAM used for primary storage are also volatile, i.e. they lose the information when not powered).
As shown in the diagram, traditionally there are two more sub-layers of the primary storage, besides main large-capacity RAM:
Processor registers are located inside the processor. Each register typically holds a word of data (often 32 or 64 bits). CPU instructions instruct the arithmetic and logic unit to perform various calculations or other operations on this data (or with the help of it). Registers are technically among the fastest of all forms of computer data storage.
Processor cache is an intermediate stage between ultra-fast registers and much slower main memory. It's introduced solely to increase performance of the computer. Most actively used information in the main memory is just duplicated in the cache memory, which is faster, but of much lesser capacity. On the other hand it is much slower, but much larger than processor registers. Multi-level hierarchical cache setup is also commonly used—primary cache being smallest, fastest and located inside the processor; secondary cache being somewhat larger and slower.
Main memory is directly or indirectly connected to the central processing unit via a memory bus. It is actually two buses (not on the diagram): an address bus and a data bus. The CPU firstly sends a number through an address bus, a number called memory address, that indicates the desired location of data. Then it reads or writes the data itself using the data bus. Additionally, a memory management unit (MMU) is a small device between CPU and RAM recalculating the actual memory address, for example to provide an abstraction of virtual memory or other tasks.
As the RAM types used for primary storage are volatile (cleared at start up), a computer containing only such storage would not have a source to read instructions from, in order to start the computer. Hence, non-volatile primary storage containing a small startup program (BIOS) is used to bootstrap the computer, that is, to read a larger program from non-volatile secondary storage to RAM and start to execute it. A non-volatile technology used for this purpose is called ROM, for read-only memory (the terminology may be somewhat confusing as most ROM types are also capable of random access).
Many types of "ROM" are not literally read only, as updates are possible; however it is slow and memory must be erased in large portions before it can be re-written. Some embedded systems run programs directly from ROM (or similar), because such programs are rarely changed. Standard computers do not store non-rudimentary programs in ROM, rather use large capacities of secondary storage, which is non-volatile as well, and not as costly.
Recently, primary storage and secondary storage in some uses refer to what was historically called, respectively, secondary storage and tertiary storage.[1]

Storage


Computer data storage, often called storage or memory, refers to computer components, devices, and recording media that retain digital data used for computing for some interval of time. Computer data storage provides one of the core functions of the modern computer, that of information retention. It is one of the fundamental components of all modern computers, and coupled with a central processing unit (CPU, a processor), implements the basic computer model used since the 1940s.
In contemporary usage, memory usually refers to a form of semiconductor storage known as random-access memory (RAM) and sometimes other forms of fast but temporary storage. Similarly, storage today more commonly refers to mass storageoptical discs, forms of magnetic storage like hard disk drives, and other types slower than RAM, but of a more permanent nature. Historically, memory and storage were respectively called main memory and secondary storage. The terms internal memory and external memory are also used.
The contemporary distinctions are helpful, because they are also fundamental to the architecture of computers in general. The distinctions also reflect an important and significant technical difference between memory and mass storage devices, which has been blurred by the historical usage of the term storage. Nevertheless, this article uses the traditional nomenclature.

Selasa, 20 April 2010

IP Address


An Internet Protocol (IP) address is a numerical label that is assigned to devices participating in a computer network, that uses the Internet Protocol for communication between its nodes.[1] An IP address serves two principal functions: host or network interface identification and location addressing. Its role has been characterized as follows: "A name indicates what we seek. An address indicates where it is. A route indicates how to get there."[2]

The designers of TCP/IP defined an IP address as a 32-bit number[1] and this system, known as Internet Protocol Version 4 or IPv4, is still in use today. However, due to the enormous growth of the Internet and the resulting depletion of available addresses, a new addressing system (IPv6), using 128 bits for the address, was developed in 1995[3] and last standardized by RFC 2460 in 1998.[4] Although IP addresses are stored as binary numbers, they are usually displayed in human-readable notations, such as 208.77.188.166 (for IPv4), and 2001:db8:0:1234:0:567:1:1 (for IPv6).

The Internet Protocol also routes data packets between networks; IP addresses specify the locations of the source and destination nodes in the topology of the routing system. For this purpose, some of the bits in an IP address are used to designate a subnetwork. The number of these bits is indicated in CIDR notation, appended to the IP address; e.g., 208.77.188.166/24.

As the development of private networks raised the threat of IPv4 address exhaustion, RFC 1918 set aside a group of private address spaces that may be used by anyone on private networks. They are often used with network address translators to connect to the global public Internet.

The Internet Assigned Numbers Authority (IANA), which manages the IP address space allocations globally, cooperates with five Regional Internet Registries (RIRs) to allocate IP address blocks to Local Internet Registries (Internet service providers) and other entities.

Colour code

In a bid to become a more trustworthy source, Wikipedia will use color codes to indicate the reliability of an article's author. Called "WikiTrust," the optional feature will assign a color code to newly-edited text, based on the author's reputation.
Famous for its vast number of articles, but not for its reliability, Wikipedia is looking to rehabilitate itself. Starting this fall, text from new or questionable sources will be signalled with a bright orange background, while trusted authors will get a lighter shade.
More than 60 million people visit Wikipedia every month, but because anyone can edit information on the site, credible information is hard to separate from edits by unreliable sources. Wikipedia is so big that Microsoft nearly admitted this was the reason it killed the Encarta encyclopedia.
However, with the new color-coding system in place, the more people view and edit new text on Wikipedia, the more "trust" the initial edits get, turning from orange to white. This way, things that people agree with more often will stick around as reliable information.
The new Wikipedia color-coding feature is built around the WikiTrust tool, which can measure an author's trustworthiness. This is accomplished by looking at how long an author's edit persists over time without objections from other editors. Authors also must build a reputation score between zero and nine, based on their past contributions.
The new color-coding system will be first put in place for articles about living people, as these pages are the most prone to malicious edits. Popular or controversial pages such as the ones for Barak Obama or Britney Spears are already restricted as to who can edit them, so the new color system will be applied to the rest of personality pages.

Cross cable


A crossover cable connects two devices of the same type, for example DTE-DTE or DCE-DCE, usually connected asymmetrically (DTE-DCE), by a modified cable called a crosslink. Such distinction of devices was introduced by IBM.

The crossing wires in a cable or in a connector adaptor allows:

  • connecting two devices directly, output of one to input of the other,
  • letting two terminal (DTE) devices communicate without an interconnecting hub knot, i.e. PCs,
  • linking two or more hubs, switches or routers (DCE) together, possibly to work as one wider device.

straight cable



var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl/." : "http://www/.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
var pageTracker = _gat._getTracker("UA-5805283-1");
pageTracker._trackPageview();
google_protectAndRun("render_ads.js::google_render_ad", google_handleError, google_render_ad);

The information listed here is to assist Network Administrators in the color coding of Ethernet cables. Please be aware that modifying Ethernet cables improperly may cause loss of network connectivity. Use this information at your own risk, and insure all connectors and cables are modified in accordance with standards. The Internet Centre and its affiliates cannot be held liable for the use of this information in whole or in part.
T-568A Straight-Through Ethernet Cable
The TIA/EIA 568-A standard which was ratified in 1995, was replaced by the TIA/EIA 568-B standard in 2002 and has been updated since. Both standards define the T-568A and T-568B pin-outs for using Unshielded Twisted Pair cable and RJ-45 connectors for Ethernet connectivity. The standards and pin-out specification appear to be related and interchangeable, but are not the same and should not be used interchangeably.
T-568B Straight-Through Ethernet Cable
Both the T-568A and the T-568B standard Straight-Through cables are used most often as patch cords for your Ethernet connections. If you require a cable to connect two Ethernet devices directly together without a hub or when you connect two hubs together, you will need to use a Crossover cable instead.
RJ-45 Crossover Ethernet Cable
A good way of remembering how to wire a Crossover Ethernet cable is to wire one end using the T-568A standard and the other end using the T-568B standard. Another way of remembering the color coding is to simply switch the Green set of wires in place with the Orange set of wires. Specifically, switch the solid Green (G) with the solid Orange, and switch the green/white with the orange/white.
Ethernet Cable Instructions:
Pull the cable off the reel to the desired length and cut. If you are pulling cables through holes, its easier to attach the RJ-45 plugs after the cable is pulled. The total length of wire segments between a PC and a hub or between two PC's cannot exceed 100 Meters (328 feet) for 100BASE-TX and 300 Meters for 10BASE-T.
Start on one end and strip the cable jacket off (about 1") using a stripper or a knife. Be extra careful not to nick the wires, otherwise you will need to start over.
Spread, untwist the pairs, and arrange the wires in the order of the desired cable end. Flatten the end between your thumb and forefinger. Trim the ends of the wires so they are even with one another, leaving only 1/2" in wire length. If it is longer than 1/2" it will be out-of-spec and susceptible to crosstalk. Flatten and insure there are no spaces between wires.
Hold the RJ-45 plug with the clip facing down or away from you. Push the wires firmly into the plug. Inspect each wire is flat even at the front of the plug. Check the order of the wires. Double check again. Check that the jacket is fitted right against the stop of the plug. Carefully hold the wire and firmly crimp the RJ-45 with the crimper.
Check the color orientation, check that the crimped connection is not about to come apart, and check to see if the wires are flat against the front of the plug. If even one of these are incorrect, you will have to start over. Test the Ethernet cable.

Selasa, 23 Mac 2010

CPU


A CPU cache is a cache used by the central processing unit of a computer to reduce the average time to access memory. The cache is a smaller, faster memory which stores copies of the data from the most frequently used main memory locations. As long as most memory accesses are cached memory locations, the average latency of memory accesses will be closer to the cache latency than to the latency of main memory.
When the processor needs to read from or write to a location in main memory, it first checks whether a copy of that data is in the cache. If so, the processor immediately reads from or writes to the cache, which is much faster than reading from or writing to main memory.
The diagram on the right shows two memories. Each location in each memory has a datum (a cache line), which in different designs ranges in size from 8[1] to 512[2] bytes. The size of the cache line is usually larger than the size of the usual access requested by a CPU instruction, which ranges from 1 to 16 bytes. Each location in each memory also has an index, which is a unique number used to refer to that location. The index for a location in main memory is called an address. Each location in the cache has a tag that contains the index of the datum in main memory that has been cached. In a CPU's data cache these entries are called cache lines or cache blocks.
Most modern desktop and server CPUs have at least three independent caches: an instruction cache to speed up executable instruction fetch, a data cache to speed up data fetch and store, and a translation lookaside buffer used to speed up virtual-to-physical address translation for both executable instructions and data.

LCD


A liquid crystal display (LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. Its uses include monitors for computers, televisions, instrument panels, and other devices ranging from aircraft cockpit displays, to every-day consumer devices such as video players, gaming devices, clocks, watches, calculators, and telephones. Among its major features are its lightweight construction, its portability, and its ability to be produced in much larger screen sizes than are practical for the construction of cathode ray tube (CRT) display technology. Its low electrical power consumption enables it to be used in battery-powered electronic equipment. It is an electronically-modulated optical device made up of any number of pixels filled with liquid crystals and arrayed in front of a light source (backlight) or reflector to produce images in color or monochrome. The earliest discovery leading to the development of LCD technology, the discovery of liquid crystals, dates from 1888.[1] By 2008, worldwide sales of televisions with LCD screens had surpassed the sale of CRT units.

Virus


A virus (from the Latin virus meaning toxin or poison) is a small infectious agent that can replicate only inside the cells of other organisms. Most viruses are too small to be seen directly with a light microscope. Viruses infect all types of organisms, from animals and plants to bacteria and archaea.[1] Since the initial discovery of tobacco mosaic virus by Martinus Beijerinck in 1898,[2] about 5,000 viruses have been described in detail,[3] although there are millions of different types.[4] Viruses are found in almost every ecosystem on Earth and these minute structures are the most abundant type of biological entity.[5][6] The study of viruses is known as virology, a sub-specialty of microbiology.
Unlike prions and viroids, viruses consist of two or three parts: all viruses have genes made from either DNA or RNA, long molecules that carry genetic information; all have a protein coat that protects these genes; and some have an envelope of fat that surrounds them when they are outside a cell. (Viroids do not have a protein coat and prions contain no RNA or DNA.) Viruses vary from simple helical and icosahedral shapes to more complex structures. Most viruses are about one hundred times smaller than an average bacterium. The origins of viruses in the evolutionary history of life are unclear: some may have evolved from plasmids—pieces of DNA that can move between cells—while others may have evolved from bacteria. In evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity.[7]
Viruses spread in many ways; plant viruses are often transmitted from plant to plant by insects that feed on sap, such as aphids, while animal viruses can be carried by blood-sucking insects. These disease-bearing organisms are known as vectors. Influenza viruses are spread by coughing and sneezing. The norovirus and rotavirus, common causes of viral gastroenteritis, are transmitted by the faecal-oral route and are passed from person to person by contact, entering the body in food or water. HIV is one of several viruses transmitted through sexual contact and by exposure to infected blood.
Viral infections in animals provoke an immune response that usually eliminates the infecting virus. Immune responses can also be produced by vaccines, which confer an artificially acquired immunity to the specific viral infection. However, some viruses including those causing HIV and viral hepatitis evade these immune responses and result in chronic infections. Microorganisms also have defences against viral infection, such as restriction modification systems which restrict the growth of viruses. Antibiotics have no effect on viruses, but several antiviral drugs have been developed.